Reservoir computing is a highly efficient machine learning framework for processing temporal data by extracting features from the input signal and mapping them into higher dimensional spaces. Physical reservoir layers have been realized using spintronic oscillators, atomic switch networks, silicon photonic modules, ferroelectric transistors, and volatile memristors. However, these devices are intrinsically energy-dissipative due to their resistive nature, which leads to increased power consumption. Therefore, capacitive memory devices can provide a more energy-efficient approach. Here, we leverage volatile biomembrane-based memcapacitors that closely mimic certain short-term synaptic plasticity functions as reservoirs to solve classification tasks and analyze time-series data in simulation and experimentally. Our system achieves a 98% accuracy rate for spoken digit classification and a normalized mean square error of 0.0012 in a second-order non-linear regression task. Further, to demonstrate the device's real-time temporal data processing capability, we demonstrate a 100% accuracy for an electroencephalography (EEG) signal classification problem for epilepsy detection. Most importantly, we demonstrate that for a random input sequence, each memcapacitor consumes on average 41.5fJ of energy per spike, irrespective of the chosen input voltage pulse width, and 415fW of average power for 100 ms pulse width, orders of magnitude lower than the state-of-the-art devices. Lastly, we believe the biocompatible, soft nature of our memcapacitor makes it highly suitable for computing and signal-processing applications in biological environments.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年7月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员