Pretrained Multimodal Large Language Models (MLLMs) are increasingly deployed in medical AI systems for clinical reasoning, diagnosis support, and report generation. However, their training on sensitive patient data raises critical privacy and compliance challenges under regulations such as HIPAA and GDPR, which enforce the "right to be forgotten". Unlearning, the process of tuning models to selectively remove the influence of specific training data points, offers a potential solution, yet its effectiveness in complex medical settings remains underexplored. To systematically study this, we introduce MedForget, a Hierarchy-Aware Multimodal Unlearning Testbed with explicit retain and forget splits and evaluation sets containing rephrased variants. MedForget models hospital data as a nested hierarchy (Institution -> Patient -> Study -> Section), enabling fine-grained assessment across eight organizational levels. The benchmark contains 3840 multimodal (image, question, answer) instances, each hierarchy level having a dedicated unlearning target, reflecting distinct unlearning challenges. Experiments with four SOTA unlearning methods on three tasks (generation, classification, cloze) show that existing methods struggle to achieve complete, hierarchy-aware forgetting without reducing diagnostic performance. To test whether unlearning truly deletes hierarchical pathways, we introduce a reconstruction attack that progressively adds hierarchical level context to prompts. Models unlearned at a coarse granularity show strong resistance, while fine-grained unlearning leaves models vulnerable to such reconstruction. MedForget provides a practical, HIPAA-aligned testbed for building compliant medical AI systems.
翻译:预训练多模态大语言模型(MLLMs)正日益应用于医疗人工智能系统,以支持临床推理、诊断辅助和报告生成。然而,这些模型基于敏感患者数据进行训练,引发了在HIPAA和GDPR等法规下关于隐私与合规性的关键挑战,这些法规强制要求实现“被遗忘权”。遗忘学习作为一种通过调整模型以选择性移除特定训练数据点影响的过程,提供了潜在的解决方案,但其在复杂医疗环境中的有效性仍未得到充分探索。为系统研究此问题,我们提出了MedForget,一个层次感知多模态遗忘测试平台,包含明确的保留集与遗忘集,以及包含改写变体的评估集。MedForget将医院数据建模为嵌套层次结构(机构 -> 患者 -> 研究 -> 章节),支持在八个组织层级上进行细粒度评估。该基准包含3840个多模态(图像、问题、答案)实例,每个层级设有专门的遗忘目标,以反映不同的遗忘挑战。在三种任务(生成、分类、完形填空)上对四种先进遗忘方法的实验表明,现有方法难以在保持诊断性能的同时实现完全且层次感知的遗忘。为检验遗忘是否真正删除了层次化路径,我们提出了一种重构攻击方法,通过逐步向提示中添加层次上下文进行测试。粗粒度遗忘后的模型表现出较强的抵抗性,而细粒度遗忘则使模型易受此类重构攻击的影响。MedForget为构建合规的医疗人工智能系统提供了一个实用且符合HIPAA标准的测试平台。