Diffusion-based generative models demonstrate state-of-the-art performance across various image synthesis tasks, yet their tendency to replicate and amplify dataset biases remains poorly understood. Although previous research has viewed bias amplification as an inherent characteristic of diffusion models, this work provides the first analysis of how sampling algorithms and their hyperparameters influence bias amplification. We empirically demonstrate that samplers for diffusion models -- commonly optimized for sample quality and speed -- have a significant and measurable effect on bias amplification. Through controlled studies with models trained on Biased MNIST, Multi-Color MNIST and BFFHQ, and with Stable Diffusion, we show that sampling hyperparameters can induce both bias reduction and amplification, even when the trained model is fixed. Source code is available at https://github.com/How-I-met-your-bias/how_i_met_your_bias.


翻译:基于扩散的生成模型在各种图像合成任务中展现出最先进的性能,但其复制并放大数据集偏见的倾向仍鲜为人知。尽管先前研究将偏见放大视为扩散模型的内在特性,但本文首次分析了采样算法及其超参数如何影响偏见放大。我们通过实证证明,扩散模型的采样器——通常针对样本质量和速度进行优化——对偏见放大具有显著且可度量的影响。通过对在Biased MNIST、Multi-Color MNIST和BFFHQ数据集上训练的模型以及Stable Diffusion进行对照研究,我们发现即使训练模型固定不变,采样超参数仍可能引发偏见减少或放大。源代码发布于https://github.com/How-I-met-your-bias/how_i_met_your_bias。

0
下载
关闭预览

相关内容

在贝叶斯统计中,超参数是先验分布的参数; 该术语用于将它们与所分析的基础系统的模型参数区分开。
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
论文笔记之attention mechanism专题1:SA-Net(CVPR 2018)
统计学习与视觉计算组
16+阅读 · 2018年4月5日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
23+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
VIP会员
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
论文笔记之attention mechanism专题1:SA-Net(CVPR 2018)
统计学习与视觉计算组
16+阅读 · 2018年4月5日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
23+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员