This paper presents a graph autoencoder architecture capable of performing projection-based model-order reduction (PMOR) on advection-dominated flows modeled by unstructured meshes. The autoencoder is coupled with the time integration scheme from a traditional deep least-squares Petrov-Galerkin projection and provides the first deployment of a graph autoencoder into a PMOR framework. The presented graph autoencoder is constructed with a two-part process that consists of (1) generating a hierarchy of reduced graphs to emulate the compressive abilities of convolutional neural networks (CNNs) and (2) training a message passing operation at each step in the hierarchy of reduced graphs to emulate the filtering process of a CNN. The resulting framework provides improved flexibility over traditional CNN-based autoencoders because it is extendable to unstructured meshes. To highlight the capabilities of the proposed framework, which is named geometric deep least-squares Petrov-Galerkin (GD-LSPG), we benchmark the method on a one-dimensional Burgers' equation problem with a structured mesh and demonstrate the flexibility of GD-LSPG by deploying it to a two-dimensional Euler equations model that uses an unstructured mesh. The proposed framework provides considerable improvement in accuracy for very low-dimensional latent spaces in comparison with traditional affine projections.


翻译:暂无翻译

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
20+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员