Email phishing is one of the most prevalent and globally consequential vectors of cyber intrusion. As systems increasingly deploy Large Language Models (LLMs) applications, these systems face evolving phishing email threats that exploit their fundamental architectures. Current LLMs require substantial hardening before deployment in email security systems, particularly against coordinated multi-vector attacks that exploit architectural vulnerabilities. This paper proposes LLMPEA, an LLM-based framework to detect phishing email attacks across multiple attack vectors, including prompt injection, text refinement, and multilingual attacks. We evaluate three frontier LLMs (e.g., GPT-4o, Claude Sonnet 4, and Grok-3) and comprehensive prompting design to assess their feasibility, robustness, and limitations against phishing email attacks. Our empirical analysis reveals that LLMs can detect the phishing email over 90% accuracy while we also highlight that LLM-based phishing email detection systems could be exploited by adversarial attack, prompt injection, and multilingual attacks. Our findings provide critical insights for LLM-based phishing detection in real-world settings where attackers exploit multiple vulnerabilities in combination.
翻译:邮件钓鱼是网络入侵中最普遍且具有全球性影响的攻击向量之一。随着系统日益广泛地部署大语言模型(LLMs)应用,这些系统面临着不断演变的钓鱼邮件威胁,这些威胁利用了其基础架构的固有弱点。当前的LLMs在部署到邮件安全系统之前需要大幅强化,特别是针对利用架构漏洞的协同多向量攻击。本文提出LLMPEA,一种基于LLM的框架,用于检测跨多个攻击向量的钓鱼邮件攻击,包括提示注入、文本精炼和多语言攻击。我们评估了三种前沿LLM(例如GPT-4o、Claude Sonnet 4和Grok-3)以及全面的提示设计,以评估它们在应对钓鱼邮件攻击时的可行性、鲁棒性和局限性。我们的实证分析表明,LLMs能以超过90%的准确率检测钓鱼邮件,同时我们也强调,基于LLM的钓鱼邮件检测系统可能受到对抗性攻击、提示注入和多语言攻击的利用。我们的研究结果为现实场景中基于LLM的钓鱼检测提供了关键见解,在这些场景中攻击者会组合利用多种漏洞。