This paper introduces ARCADIA, an agentic AI framework for causal discovery that integrates large-language-model reasoning with statistical diagnostics to construct valid, temporally coherent causal structures. Unlike traditional algorithms, ARCADIA iteratively refines candidate DAGs through constraint-guided prompting and causal-validity feedback, leading to stable and interpretable models for real-world high-stakes domains. Experiments on corporate bankruptcy data show that ARCADIA produces more reliable causal graphs than NOTEARS, GOLEM, and DirectLiNGAM while offering a fully explainable, intervention-ready pipeline. The framework advances AI by demonstrating how agentic LLMs can participate in autonomous scientific modeling and structured causal inference.
翻译:本文介绍ARCADIA,一种用于因果发现的智能体AI框架,该框架将大语言模型推理与统计诊断相结合,以构建有效且时间连贯的因果结构。与传统算法不同,ARCADIA通过约束引导提示和因果有效性反馈迭代优化候选有向无环图,从而为现实世界高风险领域提供稳定且可解释的模型。在企业破产数据上的实验表明,ARCADIA生成的因果图比NOTEARS、GOLEM和DirectLiNGAM更可靠,同时提供完全可解释、支持干预的完整流程。该框架通过展示智能体大语言模型如何参与自主科学建模与结构化因果推断,推动了人工智能的发展。