We study the $k$-Submodular Cover ($kSC$) problem, a natural generalization of the classical Submodular Cover problem that arises in artificial intelligence and combinatorial optimization tasks such as influence maximization, resource allocation, and sensor placement. Existing algorithms for $\kSC$ often provide weak approximation guarantees or incur prohibitively high query complexity. To overcome these limitations, we propose a \textit{Fast Stochastic Greedy} algorithm that achieves strong bicriteria approximation while substantially lowering query complexity compared to state-of-the-art methods. Our approach dramatically reduces the number of function evaluations, making it highly scalable and practical for large-scale real-world AI applications where efficiency is essential.
翻译:本文研究k-子模覆盖(kSC)问题,该问题是经典子模覆盖问题的自然推广,在人工智能与组合优化任务(如影响力最大化、资源分配和传感器布局)中具有重要应用。现有kSC算法通常仅提供较弱的近似保证或需要极高的查询复杂度。为克服这些局限,我们提出一种快速随机贪心算法,在保持强双准则近似性能的同时,显著降低了相较于现有最优方法的查询复杂度。该方法大幅减少了函数评估次数,使其具有高度可扩展性,能够高效应用于对计算效率要求严格的大规模现实人工智能场景。