This paper presents the application of socio-cognitive mutation operators inspired by the TOPSIS method to the Low Autocorrelation Binary Sequence (LABS) problem. Traditional evolutionary algorithms, while effective, often suffer from premature convergence and poor exploration-exploitation balance. To address these challenges, we introduce socio-cognitive mutation mechanisms that integrate strategies of following the best solutions and avoiding the worst. By guiding search agents to imitate high-performing solutions and avoid poor ones, these operators enhance both solution diversity and convergence efficiency. Experimental results demonstrate that TOPSIS-inspired mutation outperforms the base algorithm in optimizing LABS sequences. The study highlights the potential of socio-cognitive learning principles in evolutionary computation and suggests directions for further refinement.
翻译:本文提出了一种受TOPSIS方法启发的社会认知变异算子,并将其应用于低自相关二进制序列(LABS)问题。传统的进化算法虽然有效,但常面临早熟收敛和探索-利用平衡不佳的问题。为应对这些挑战,我们引入了社会认知变异机制,该机制融合了追随最优解与规避最差解的策略。通过引导搜索代理模仿高性能解并避免劣质解,这些算子同时提升了解的多样性和收敛效率。实验结果表明,受TOPSIS启发的变异算子在优化LABS序列方面优于基础算法。本研究凸显了社会认知学习原理在进化计算中的潜力,并指出了进一步改进的方向。