We prove multi-pass streaming lower bounds for uniformity testing over a domain of size $2m$. The tester receives a stream of $n$ i.i.d. samples and must distinguish (i) the uniform distribution on $[2m]$ from (ii) a Paninski-style planted distribution in which, for each pair $(2i-1,2i)$, the probabilities are biased left or right by $ε/2m$. We show that any $\ell$-pass streaming algorithm using space $s$ and achieving constant advantage must satisfy the tradeoff $sn\ell=\tildeΩ(m/ε^2)$. This extends the one-pass lower bound of Diakonikolas, Gouleakis, Kane, and Rao (2019) to multiple passes. Our proof has two components. First, we develop a hybrid argument, inspired by Dinur (2020), that reduces streaming to two-player communication problems. This reduction relies on a new perspective on hardness: we identify the source of hardness as uncertainty in the bias directions, rather than the collision locations. Second, we prove a strong lower bound for a basic two-player communication task, in which Alice and Bob must decide whether two random sign vectors $Y^a,Y^b\in\{\pm 1\}^m$ are independent or identical, yet they cannot observe the signs directly--only noisy local views of each coordinate. Our techniques may be of independent use for other streaming problems with stochastic inputs.


翻译:我们证明了定义域大小为$2m$的均匀性测试的多轮流式下界。测试器接收一个包含$n$个独立同分布样本的流,必须区分以下两种情况:(i) 定义在$[2m]$上的均匀分布与(ii) Paninski式植入分布——其中对于每个配对$(2i-1,2i)$,概率向左或向右偏移$ε/2m$。我们证明任何使用空间$s$且获得恒定优势的$\ell$轮流式算法必须满足权衡关系$sn\ell=\tildeΩ(m/ε^2)$。这将Diakonikolas、Gouleakis、Kane和Rao(2019)的单轮下界推广到多轮情形。我们的证明包含两个组成部分。首先,受Dinur(2020)启发,我们建立了将流式计算简化为双玩家通信问题的混合论证。该归约基于对困难根源的新认知:我们将困难来源识别为偏置方向的不确定性,而非碰撞位置的不确定性。其次,我们证明了一个基础双玩家通信任务的强下界,其中Alice和Bob需要判断两个随机符号向量$Y^a,Y^b\in\{\pm 1\}^m$是相互独立还是完全相同,但他们无法直接观测符号——仅能获得每个坐标的带噪局部视图。我们的技术可能对具有随机输入的其他流式问题具有独立应用价值。

0
下载
关闭预览

相关内容

【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
50+阅读 · 2021年6月2日
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
条件概率和贝叶斯公式 - 图解概率 03
遇见数学
10+阅读 · 2018年6月5日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员