We consider the problem of designing optimal level-$α$ power-one tests for composite nulls. Given a parameter $α\in (0,1)$ and a stream of $\mathcal{X}$-valued observations $\{X_n: n \geq 1\} \overset{i.i.d.}{\sim} P$, the goal is to design a level-$α$ power-one test $τ_α$ for the null $H_0: P \in \mathcal{P}_0 \subset \mathcal{P}(\mathcal{X})$. Prior works have shown that any such $τ_α$ must satisfy $\mathbb{E}_P[τ_α] \geq \tfrac{\log(1/α)}{γ^*(P, \mathcal{P}_0)}$, where $γ^*(P, \mathcal{P}_0)$ is the so-called $\mathrm{KL}_{\inf}$ or minimum divergence of $P$ to the null class. In this paper, our objective is to develop and analyze constructive schemes that match this lower bound as $α\downarrow 0$. We first consider the finite-alphabet case~($|\mathcal{X}| = m < \infty$), and show that a test based on \emph{universal} $e$-process~(formed by the ratio of a universal predictor and the running null MLE) is optimal in the above sense. The proof relies on a Donsker-Varadhan~(DV) based saddle-point representation of $\mathrm{KL}_{\inf}$, and an application of Sion's minimax theorem. This characterization motivates a general method for arbitrary $\mathcal{X}$: construct an $e$-process based on the empirical solutions to the saddle-point representation over a sufficiently rich class of test functions. We give sufficient conditions for the optimality of this test for compact convex nulls, and verify them for Hölder smooth density models. We end the paper with a discussion on the computational aspects of implementing our proposed tests in some practical settings.
翻译:本文研究针对复合零假设设计最优水平-α 幂一检验的问题。给定参数 α∈(0,1) 及服从独立同分布 P 的 𝒳 值观测序列 {X_n: n ≥ 1},目标是为零假设 H_0: P ∈ 𝒫_0 ⊂ 𝒫(𝒳) 设计水平-α 幂一检验 τ_α。已有研究表明,任何此类 τ_α 必须满足 𝔼_P[τ_α] ≥ log(1/α)/γ^*(P, 𝒫_0),其中 γ^*(P, 𝒫_0) 称为 P 到零假设类的 KL_inf 或最小散度。本文旨在构建和分析当 α↓0 时能达到该下界的构造性方案。我们首先考虑有限字母表情形(|𝒳| = m < ∞),证明基于通用 e-过程(由通用预测器与运行零假设极大似然估计之比构成)的检验在上述意义下是最优的。证明依赖于基于 Donsker-Varadhan 鞍点表示的 KL_inf 特性,以及 Sion 极小极大定理的应用。这一特性启发我们提出适用于任意 𝒳 的通用方法:在足够丰富的检验函数类上,基于鞍点表示的经验解构建 e-过程。我们给出了该检验对紧凸零假设最优性的充分条件,并在 Hölder 光滑密度模型中验证了这些条件。最后,我们讨论了在实际场景中实现所提出检验的计算问题。