We develop a framework for quantum differential privacy (QDP) based on quantum hypothesis testing and Blackwell's ordering. This approach characterizes $(\eps,\delta)$-QDP via hypothesis testing divergences and identifies the most informative quantum state pairs under privacy constraints. We apply this to analyze the stability of quantum learning algorithms, generalizing classical results to the case $\delta>0$. Additionally, we study privatized quantum parameter estimation, deriving tight bounds on the quantum Fisher information under QDP. Finally, we establish near-optimal contraction bounds for differentially private quantum channels with respect to the hockey-stick divergence.
翻译:我们基于量子假设检验与布莱克韦尔序建立了一个量子差分隐私(QDP)框架。该方法通过假设检验散度刻画$(\\epsilon,\\delta)$-QDP,并在隐私约束下识别最具信息量的量子态对。我们将此应用于分析量子学习算法的稳定性,将经典结果推广至$\delta>0$的情形。此外,我们研究了私有化量子参数估计,推导出QDP约束下量子费希尔信息的紧致界。最后,针对差分隐私量子信道,我们建立了关于曲棍球散度的近最优收缩界。