We study the computational complexity of explaining preference data through Boolean attribute models (BAMs), motivated by extensive research involving attribute models and their promise in understanding preference structure and enabling more efficient decision-making processes. In a BAM, each alternative has a subset of Boolean attributes, each voter cares about a subset of attributes, and voters prefer alternatives with more of their desired attributes. In the BAM problem, we are given a preference profile and a number k, and want to know whether there is a Boolean k-attribute model explaining the profile. We establish a complexity dichotomy for the number of attributes k: BAM is linear-time solvable for $k \le 2$ but NP-complete for $k \ge 3$. The problem remains hard even when preference orders have length two. On the positive side, BAM becomes fixed-parameter tractable when parameterized by the number of alternatives m. For the special case of two voters, we provide a linear-time algorithm. We also analyze variants where partial information is given: When voter preferences over attributes are known (BAM WITH CARES) or when alternative attributes are specified (BAM WITH HAS), we show that for most parameters BAM WITH CARES is more difficult whereas BAM WITH HAS is more tractable except for being NP-hard even for one voter.


翻译:我们研究了通过布尔属性模型解释偏好数据的计算复杂性,这一研究受到属性模型广泛研究的推动,这些模型在理解偏好结构和实现更高效决策过程中展现出潜力。在布尔属性模型中,每个备选方案具有一个布尔属性子集,每个投票者关注一组属性子集,且投票者偏好拥有更多其期望属性的备选方案。在布尔属性模型问题中,给定一个偏好配置和一个数值k,我们需要判断是否存在一个能解释该配置的布尔k属性模型。我们针对属性数量k建立了复杂性二分性:当$k \le 2$时,布尔属性模型问题可在线性时间内求解;但当$k \ge 3$时,该问题为NP完全问题。即使偏好序长度仅为2,该问题仍保持困难性。从积极方面看,当以备选方案数量m为参数时,布尔属性模型问题变为固定参数可解。针对两名投票者的特殊情况,我们提出了线性时间算法。我们还分析了给定部分信息的变体问题:当投票者对属性的偏好已知时,我们证明在多数参数设置下该变体问题更为困难;而当备选方案属性已指定时,该变体问题除在单投票者情况下仍为NP困难外,通常更易处理。

0
下载
关闭预览

相关内容

一个具体事物,总是有许许多多的性质与关系,我们把一个事物的性质与关系,都叫作事物的属性。 事物与属性是不可分的,事物都是有属性的事物,属性也都是事物的属性。 一个事物与另一个事物的相同或相异,也就是一个事物的属性与另一事物的属性的相同或相异。 由于事物属性的相同或相异,客观世界中就形成了许多不同的事物类。具有相同属性的事物就形成一类,具有不同属性的事物就分别地形成不同的类。
专知会员服务
10+阅读 · 2021年10月6日
专知会员服务
17+阅读 · 2021年7月13日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
0+阅读 · 12月8日
VIP会员
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员