The problem of optimal linear estimation of functionals depending on the unknown values of a random field $\zeta(t,x)$, which is mean-square continuous periodically correlated with respect to time argument $t\in\mathbb R$ and isotropic on the unit sphere ${S_n}$ with respect to spatial argument $x\in{S_n}$. Estimates are based on observations of the field $\zeta(t,x)+\theta(t,x)$ at points $(t,x):t<0,x\in S_{n}$, where $\theta(t,x)$ is an uncorrelated with $\zeta(t,x)$ random field, which is mean-square continuous periodically correlated with respect to time argument $t\in\mathbb R$ and isotropic on the sphere ${S_n}$ with respect to spatial argument $x\in{S_n}$. Formulas for calculating the mean square errors and the spectral characteristics of the optimal linear estimate of functionals are derived in the case of spectral certainty where the spectral densities of the fields are exactly known. Formulas that determine the least favourable spectral densities and the minimax (robust) spectral characteristics are proposed in the case where the spectral densities are not exactly known while a class of admissible spectral densities is given.
翻译:本文研究依赖于随机场 $\zeta(t,x)$ 未知值之泛函的最优线性估计问题,该随机场关于时间参数 $t\in\mathbb R$ 均方连续周期相关,且关于空间参数 $x\in{S_n}$ 在单位球面 ${S_n}$ 上各向同性。估计基于在点集 $(t,x):t<0,x\in S_{n}$ 处对场 $\zeta(t,x)+\theta(t,x)$ 的观测,其中 $\theta(t,x)$ 是与 $\zeta(t,x)$ 不相关的随机场,其关于时间参数 $t\in\mathbb R$ 均方连续周期相关,且关于空间参数 $x\in{S_n}$ 在球面 ${S_n}$ 上各向同性。在谱密度确知的情况下,推导了计算最优线性估计之均方误差及谱特征的公式。当谱密度未精确已知但给定了容许谱密度类时,提出了确定最不利谱密度与极小极大(稳健)谱特征的公式。