This study investigates emotion drift: the change in emotional state across a single text, within mental health-related messages. While sentiment analysis typically classifies an entire message as positive, negative, or neutral, the nuanced shift of emotions over the course of a message is often overlooked. This study detects sentence-level emotions and measures emotion drift scores using pre-trained transformer models such as DistilBERT and RoBERTa. The results provide insights into patterns of emotional escalation or relief in mental health conversations. This methodology can be applied to better understand emotional dynamics in content.
翻译:本研究探讨情感漂移现象:即心理健康相关文本中,情感状态在单篇文本内的动态变化。传统情感分析通常将整条信息整体归类为积极、消极或中性,而信息传递过程中情感的细微演变常被忽视。本研究利用预训练的Transformer模型(如DistilBERT和RoBERTa)检测句子级情感,并计算情感漂移分数。研究结果揭示了心理健康对话中情感升级或缓解的模式规律。该方法可应用于深入理解文本内容中的情感动态演变机制。