Motivation: Biomedical named entity recognition (BioNER) is the most fundamental task in biomedical text mining. State-of-the-art BioNER systems often require handcrafted features specifically designed for each type of biomedical entities. This feature generation process requires intensive labors from biomedical and linguistic experts, and makes it difficult to adapt these systems to new biomedical entity types. Although recent studies explored using neural network models for BioNER to free experts from manual feature generation, these models still require substantial human efforts to annotate massive training data. Results: We propose a multi-task learning framework for BioNER that is based on neural network models to save human efforts. We build a global model by collectively training multiple models that share parameters, each model capturing the characteristics of a different biomedical entity type. In experiments on five BioNER benchmark datasets covering four major biomedical entity types, our model outperforms state-of-the-art systems and other neural network models by a large margin, even when only limited training data are available. Further analysis shows that the large performance gains come from sharing character- and word-level information between different biomedical entities. The approach creates new opportunities for text-mining approaches to help biomedical scientists better exploit knowledge in biomedical literature.


翻译:动力:生物医学名称实体识别(BioNER)是生物医学文本采矿的最根本任务。最先进的生物能源系统往往需要专门为每一种生物医学实体设计的手工设计特征。这种特性生成过程需要生物医学和语言专家的密集劳动,难以将这些系统改造到新的生物医学实体类型。尽管最近利用生物能源神经网络模型研究的神经网络模型使专家摆脱人工生成特征的专家,但这些模型仍然需要大量人类努力来批注大规模培训数据。结果:我们提议了一个以神经网络模型为基础的生物能源多任务学习框架,以拯救人类的努力。我们通过集体培训多个模型来建立一个全球模型,这些模型共享参数,每个模型都捕捉到不同生物医学实体类型的特征。在涉及四种主要生物能源实体类型的五个生物能源基准数据集的实验中,我们的模型大大超越了最新技术系统和其他神经网络模型,即使只有有限的培训数据。进一步的分析表明,在不同生物医学实体之间分享特征和文字水平信息后,从大量业绩收益可以产生。这一方法为更好地利用生物医学研究工具创造了新的机会。

3
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
143+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Arxiv
5+阅读 · 2019年11月22日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
72+阅读 · 2018年12月22日
Dynamic Transfer Learning for Named Entity Recognition
Arxiv
3+阅读 · 2018年12月13日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员