Multidimensional factor models with moderations on all model parameters have so far been limited to single-factor and two-factor models. This does not align well with existing psychological measures, which are commonly intended to assess 3-5 dimensions of a latent construct. In this paper, I introduce a multidimensional MNLFA model that permits the moderation of item intercepts, loadings, residual variances, factor means, variances, and correlations across three or more latent factors. I describe efforts to implement the model using Bayesian methods through Stan and penalized maximum likelihood approaches to stabilize estimation and detect partial measurement non-invariance while preserving model interpretability. Closed-form analytic gradients of the likelihood, eliminating the need for costly numerical or MCMC-based approximations. We conclude by discussing the theoretical implications of penalization for measurement invariance, computational considerations, and future directions for extending the framework to categorical indicators, longitudinal data, and applied research contexts.
翻译:迄今为止,对所有模型参数进行调节的多维因子模型仅限于单因子和双因子模型。这与现有心理测量工具的实际情况不符,后者通常旨在评估潜在构念的3至5个维度。本文提出一种多维MNLFA模型,允许在三个或更多潜在因子上对项目截距、载荷、残差方差、因子均值、方差及相关性进行调节。我阐述了通过Stan采用贝叶斯方法实现该模型的尝试,以及通过惩罚最大似然法来稳定估计、检测部分测量非不变性,同时保持模型可解释性的策略。该模型提供了似然函数的闭式解析梯度,无需依赖计算成本高昂的数值或基于MCMC的近似方法。最后,我们讨论了惩罚化对测量不变性的理论意义、计算考量,以及将该框架拓展至分类指标、纵向数据和应用研究场景的未来方向。