Egomotion estimation is crucial for applications such as autonomous navigation and robotics, where accurate and real-time motion tracking is required. However, traditional methods relying on inertial sensors are highly sensitive to external conditions, and suffer from drifts leading to large inaccuracies over long distances. Vision-based methods, particularly those utilising event-based vision sensors, provide an efficient alternative by capturing data only when changes are perceived in the scene. This approach minimises power consumption while delivering high-speed, low-latency feedback. In this work, we propose a fully event-based pipeline for egomotion estimation that processes the event stream directly within the event-based domain. This method eliminates the need for frame-based intermediaries, allowing for low-latency and energy-efficient motion estimation. We construct a shallow spiking neural network using a synaptic gating mechanism to convert precise event timing into bursts of spikes. These spikes encode local optical flow velocities, and the network provides an event-based readout of egomotion. We evaluate the network's performance on a dedicated chip, demonstrating strong potential for low-latency, low-power motion estimation. Additionally, simulations of larger networks show that the system achieves state-of-the-art accuracy in egomotion estimation tasks with event-based cameras, making it a promising solution for real-time, power-constrained robotics applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员