In this paper we prove the efficacy of a simple greedy algorithm for a finite horizon online resource allocation/matching problem, when the corresponding static planning linear program (SPP) exhibits a non-degeneracy condition called the general position gap (GPG). The key intuition that we formalize is that the solution of the reward maximizing SPP is the same as a feasibility Linear Program restricted to the optimal basic activities, and under GPG this solution can be tracked with bounded regret by a greedy algorithm, i.e., without the commonly used technique of periodically resolving the SPP. The goal of the decision maker is to combine resources (from a finite set of resource types) into configurations (from a finite set of feasible configurations) where each configuration is specified by the number of resources consumed of each type and a reward. The resources are further subdivided into three types - offline (whose quantity is known and available at time 0), online-queueable (which arrive online and can be stored in a buffer), and online-nonqueueable (which arrive online and must be matched on arrival or lost). Under GRG we prove that, (i) our greedy algorithm gets bounded any-time regret of $\mathcal{O}(1/\epsilon_0)$ for matching reward ($\epsilon_0$ is a measure of the GPG) when no configuration contains both an online-queueable and an online-nonqueueable resource, and (ii) $\mathcal{O}(\log t)$ expected any-time regret otherwise (we also prove a matching lower bound). By considering the three types of resources, our matching framework encompasses several well-studied problems such as dynamic multi-sided matching, network revenue management, online stochastic packing, and multiclass queueing systems.


翻译:在本文中,当相应的静态规划线性程序(SPP)显示一种非降解性条件,称为一般位置差距(GPG)时,我们证明简单贪婪的算法对有限视野在线资源分配/匹配问题的功效。我们正式确定的关键直觉是,奖励最大化SPP的解决方案与限于最佳基本活动的可行性线性方案相同,在GPG下,这一解决方案可以通过贪婪的算法(即没有定期解决SPP的常用技术)来跟踪。决策者的目标是将资源(来自一定的资源类型)合并为非退化性配置(来自一定的可行配置的固定组合)。在这种配置中,每种配置都由每种类型所消耗的资源数量和奖赏来确定。资源进一步细分为三种类型 - 离线性(数量已知且在时间0时可以使用) 在线可吸收的算法(可上网并存储于缓冲 ) 和在线不可连接的匹配(在到达或丢失时必须匹配到的资源类型,GRG$(Oi) 的匹配一个在线资源类型(Oral_ral_ral_sal) 的排序。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月19日
Arxiv
0+阅读 · 2022年9月16日
Arxiv
0+阅读 · 2022年9月16日
The Fragility of Optimized Bandit Algorithms
Arxiv
0+阅读 · 2022年9月15日
Continuous Patrolling Games
Arxiv
0+阅读 · 2022年9月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员