Positive linear programs (LPs) model many graph and operations research problems. One can solve for a $(1+\epsilon)$-approximation for positive LPs, for any selected $\epsilon$, in polylogarithmic depth and near-linear work via variations of the multiplicative weight update (MWU) method. Despite extensive theoretical work on these algorithms through the decades, their empirical performance is not well understood. In this work, we implement and test an efficient parallel algorithm for solving positive LP relaxations, and apply it to graph problems such as densest subgraph, bipartite matching, vertex cover and dominating set. We accelerate the algorithm via a new step size search heuristic. Our implementation uses sparse linear algebra optimization techniques such as fusion of vector operations and use of sparse format. Furthermore, we devise an implicit representation for graph incidence constraints. We demonstrate the parallel scalability with the use of threading OpenMP and MPI on the Stampede2 supercomputer. We compare this implementation with exact libraries and specialized libraries for the above problems in order to evaluate MWU's practical standing for both accuracy and performance among other methods. Our results show this implementation is faster than general purpose LP solvers (IBM CPLEX, Gurobi) in all of our experiments, and in some instances, outperforms state-of-the-art specialized parallel graph algorithms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月28日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员