Salient object detection has been long studied to identify the most visually attractive objects in images/videos. Recently, a growing amount of approaches have been proposed all of which rely on the contour/edge information to improve detection performance. The edge labels are either put into the loss directly or used as extra supervision. The edge and body can also be learned separately and then fused afterward. Both methods either lead to high prediction errors near the edge or cannot be trained in an end-to-end manner. Another problem is that existing methods may fail to detect objects of various sizes due to the lack of efficient and effective feature fusion mechanisms. In this work, we propose to decompose the saliency detection task into two cascaded sub-tasks, \emph{i.e.}, detail modeling and body filling. Specifically, the detail modeling focuses on capturing the object edges by supervision of explicitly decomposed detail label that consists of the pixels that are nested on the edge and near the edge. Then the body filling learns the body part which will be filled into the detail map to generate more accurate saliency map. To effectively fuse the features and handle objects at different scales, we have also proposed two novel multi-scale detail attention and body attention blocks for precise detail and body modeling. Experimental results show that our method achieves state-of-the-art performances on six public datasets.


翻译:显性对象的探测已经进行了长期的研究,以辨别图像/视频中最有视觉吸引力的物体。 最近, 提出了越来越多的方法, 所有这些方法都依靠等距/ 尖端信息来改进探测性能。 边缘标签要么直接置于损失中, 要么作为额外监督使用。 边缘和身体也可以单独学习, 然后在后方结合。 两种方法要么导致边缘附近的高预测误差, 要么无法以端对端方式培训。 另一个问题是, 现有的方法可能无法探测不同大小的物体, 由于缺乏高效和有效的特性聚合机制。 在此工作中, 我们提议将显性探测任务分解成两个级次任务, 即 \ emph{ i. e.}, 或将边缘标签直接置于损失中, 或用作额外的监督。 具体来说, 详细的模型侧重于通过监督在边缘和边缘附近嵌套的像素所构成的细节标签来捕捉到物体边缘。 然后, 填充体的体会学习将在模型中填充的体部分, 以生成更精确的精确的深度地图 。, 我们有效地展示了六级的体的形状,, 将显示我们提出的精确的尺寸的体形的形状 。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月3日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员