We present a theory for simultaneous approximation of the score function and its derivatives, enabling the handling of data distributions with low-dimensional structure and unbounded support. Our approximation error bounds match those in the literature while relying on assumptions that relax the usual bounded support requirement. Crucially, our bounds are free from the curse of dimensionality. Moreover, we establish approximation guarantees for derivatives of any prescribed order, extending beyond the commonly considered first-order setting.


翻译:本文提出了一种同时逼近评分函数及其导数的理论,使得处理具有低维结构及无界支撑的数据分布成为可能。我们的逼近误差界与文献中的结果相当,同时依赖于放松了通常有界支撑要求的假设。关键的是,我们的误差界避免了维数灾难。此外,我们为任意指定阶数的导数建立了逼近保证,从而超越了通常仅考虑一阶导数的研究框架。

0
下载
关闭预览

相关内容

【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
专知会员服务
12+阅读 · 2021年6月20日
专知会员服务
29+阅读 · 2020年10月2日
【CVPR2020-Oral】用于深度网络的任务感知超参数
专知会员服务
28+阅读 · 2020年5月25日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月25日
VIP会员
相关VIP内容
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员