We present $\textbf{P}$robabilistically $\textbf{T}$ightened $\textbf{Li}$near $\textbf{R}$elaxation-based $\textbf{P}$erturbation $\textbf{A}$nalysis ($\texttt{PT-LiRPA}$), a novel framework that combines over-approximation techniques from LiRPA-based approaches with a sampling-based method to compute tight intermediate reachable sets. In detail, we show that with negligible computational overhead, $\texttt{PT-LiRPA}$ exploiting the estimated reachable sets, significantly tightens the lower and upper linear bounds of a neural network's output, reducing the computational cost of formal verification tools while providing probabilistic guarantees on verification soundness. Extensive experiments on standard formal verification benchmarks, including the International Verification of Neural Networks Competition, show that our $\texttt{PT-LiRPA}$-based verifier improves robustness certificates, i.e., the certified lower bound of $\varepsilon$ perturbation tolerated by the models, by up to 3.31X and 2.26X compared to related work. Importantly, our probabilistic approach results in a valuable solution for challenging competition entries where state-of-the-art formal verification methods fail, allowing us to provide answers with high confidence (i.e., at least 99%).
翻译:我们提出了基于概率收紧的线性松弛扰动分析(PT-LiRPA),这是一个新颖的框架,它将基于LiRPA方法中的过近似技术与一种基于采样的方法相结合,以计算紧密的中间可达集。具体而言,我们证明,在可忽略的计算开销下,PT-LiRPA利用估计的可达集,显著收紧了神经网络输出的下界和上界线性边界,从而降低了形式化验证工具的计算成本,同时为验证的可靠性提供了概率保证。在包括国际神经网络验证竞赛在内的标准形式化验证基准上进行的大量实验表明,我们基于PT-LiRPA的验证器将鲁棒性证书(即模型可容忍的ε扰动的经认证下界)相比相关工作提升了最高达3.31倍和2.26倍。重要的是,我们的概率方法为最先进的形式化验证方法无法应对的、具有挑战性的竞赛条目提供了一个有价值的解决方案,使我们能够以高置信度(即至少99%)提供答案。