We prove multi-pass streaming lower bounds for uniformity testing over a domain of size $2m$. The tester receives a stream of $n$ i.i.d. samples and must distinguish (i) the uniform distribution on $[2m]$ from (ii) a Paninski-style planted distribution in which, for each pair $(2i-1,2i)$, the probabilities are biased left or right by $ε/2m$. We show that any $\ell$-pass streaming algorithm using space $s$ and achieving constant advantage must satisfy the tradeoff $sn\ell=\tildeΩ(m/ε^2)$. This extends the one-pass lower bound of Diakonikolas, Gouleakis, Kane, and Rao (2019) to multiple passes. Our proof has two components. First, we develop a hybrid argument, inspired by Dinur (2020), that reduces streaming to two-player communication problems. This reduction relies on a new perspective on hardness: we identify the source of hardness as uncertainty in the bias directions, rather than the collision locations. Second, we prove a strong lower bound for a basic two-player communication task, in which Alice and Bob must decide whether two random sign vectors $Y^a,Y^b\in\{\pm 1\}^m$ are independent or identical, yet they cannot observe the signs directly--only noisy local views of each coordinate. Our techniques may be of independent use for other streaming problems with stochastic inputs.
翻译:我们证明了定义域大小为$2m$的均匀性检验的多遍流式下界。检验器接收一个包含$n$个独立同分布样本的流,必须区分(i)定义在$[2m]$上的均匀分布与(ii)一种Paninski风格的植入分布——在该分布中,对于每一对$(2i-1,2i)$,概率向左或向右偏置$ε/2m$。我们证明,任何使用空间$s$且达到恒定优势的$\ell$遍流式算法必须满足权衡关系$sn\ell=\tildeΩ(m/ε^2)$。这将Diakonikolas、Gouleakis、Kane和Rao(2019)的单遍下界推广到了多遍情况。我们的证明包含两个部分。首先,受Dinur(2020)启发,我们开发了一种混合论证,将流式问题归约到双玩家通信问题。该归约基于对困难来源的新视角:我们将困难根源识别为偏置方向的不确定性,而非碰撞位置。其次,我们证明了一个基础双玩家通信任务的强下界,其中Alice和Bob必须判定两个随机符号向量$Y^a,Y^b\in\{\pm 1\}^m$是独立的还是相同的,但他们无法直接观测符号——只能观测每个坐标的带噪局部视图。我们的技术可能对其他具有随机输入的流式问题具有独立应用价值。