This work introduces Neural Chronos Ordinary Differential Equations (Neural CODE), a deep neural network architecture that fits a continuous-time ODE dynamics for predicting the chronology of a system both forward and backward in time. To train the model, we solve the ODE as an initial value problem and a final value problem, similar to Neural ODEs. We also explore two approaches to combining Neural CODE with Recurrent Neural Networks by replacing Neural ODE with Neural CODE (CODE-RNN), and incorporating a bidirectional RNN for full information flow in both time directions (CODE-BiRNN), and variants with other update cells namely GRU and LSTM: CODE-GRU, CODE-BiGRU, CODE-LSTM, CODE-BiLSTM. Experimental results demonstrate that Neural CODE outperforms Neural ODE in learning the dynamics of a spiral forward and backward in time, even with sparser data. We also compare the performance of CODE-RNN/-GRU/-LSTM and CODE-BiRNN/-BiGRU/-BiLSTM against ODE-RNN/-GRU/-LSTM on three real-life time series data tasks: imputation of missing data for lower and higher dimensional data, and forward and backward extrapolation with shorter and longer time horizons. Our findings show that the proposed architectures converge faster, with CODE-BiRNN/-BiGRU/-BiLSTM consistently outperforming the other architectures on all tasks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员