Sleep difficulties in children are heterogeneous in presentation, yet conventional assessment tools like the Children's Sleep Habits Questionnaire (CSHQ) reduce this complexity to a single cumulative score, obscuring distinct patterns of sleep disturbance that require different interventions. Latent Class Regression (LCR) models offer a principled approach to identify subgroups with shared sleep behaviour profiles whilst incorporating predictors of group membership, but Bayesian inference for these models has been hindered by computational challenges and the absence of variable selection methods. We propose a fully Bayesian framework for LCR that uses Pólya-Gamma data augmentation, enabling efficient sampling of regression coefficients. We extend this framework to include variable selection for both predictors and item responses: predictor variable selection via latent inclusion indicators and item selection through a partially collapsed approach. Through simulation studies, we show that the proposed methods yield accurate parameter estimates, resolve identifiability issues arising in full models and successfully identify informative predictors and items while excluding noise variables. Applying this methodology to CSHQ data from 148 children reveals distinct latent subgroups with different sleep behaviour profiles, anxious nighttime sleepers, short/light sleepers and those with more pervasive sleep problems, with each carrying distinct implications for intervention. Results also highlight the predictive role of Autism Spectrum Disorder diagnosis in subgroup membership. These findings demonstrate the limitations of conventional CSHQ scoring and illustrate the benefits of a probabilistic subgroup-based approach as an alternative for understanding paediatric sleep difficulties.
翻译:儿童睡眠障碍在临床表现上具有异质性,然而传统评估工具如儿童睡眠习惯问卷(CSHQ)将这种复杂性简化为单一累积分数,掩盖了需要不同干预措施的睡眠障碍的独特模式。潜在类别回归(LCR)模型提供了一种原则性方法,用于识别具有共同睡眠行为特征的亚组,同时纳入群体归属的预测因子,但这些模型的贝叶斯推断一直受限于计算挑战和变量选择方法的缺失。我们提出了一个完全贝叶斯的LCR框架,采用Pólya-Gamma数据增强技术,实现了回归系数的高效采样。我们扩展该框架以包含预测变量和项目响应的变量选择:预测变量选择通过潜在包含指标实现,项目选择则采用部分折叠方法。通过模拟研究,我们表明所提方法能产生准确的参数估计,解决完整模型中出现的可识别性问题,并成功识别信息性预测变量和项目,同时排除噪声变量。将该方法应用于148名儿童的CSHQ数据,揭示了具有不同睡眠行为特征的潜在亚组:焦虑型夜间睡眠者、短/浅睡眠者以及存在更广泛睡眠问题的儿童,每个亚组对干预措施具有不同的意义。结果还突显了自闭症谱系障碍诊断在亚组归属中的预测作用。这些发现揭示了传统CSHQ评分的局限性,并阐明了基于概率的亚组方法作为理解儿科睡眠障碍的替代方案的优势。