Folksonomy is a non-hierarchical document categorizing system, that treats every category in a flat manner, dan every category is entered freely by anyone who submitted a document in these categories. Categorization is done automatically at the time a document is submitted, by entering the list of categories that best fit the document. del.icio.us (http://del.icio.us) site is one of the most popular social bookmarking sites that uses folksonomy. Usage of folksonomy, although very easy, also has its weaknesses, such as use of different tags for the same concept, use of the same tag for different concepts, no quality control, etc. We try to provide a solution for some of these problems by analyzing Web documents' contents and categorizing them automatically using multinomial naive Bayes algorithm. Bayes classifier works by using a set of evidences and a set of classes. By training the system using sample data, we can determine the probability of an evidence given a particular class. Bayes classifier also uses prior probability of a class, which can be calculated from sample data. From these analysis, when given a new document which is formed by a set of evidences (words), the probabilities of each class given that document (posterior probabilities) can be determined. This system is implemented using PHP 5, Apache, and MySQL. The conclusion from building this system is that the Bayes method can be used to automatically categorize documents and also as an assistive tool for manual categorization. ----- Folksonomy merupakan metode kategorisasi dokumen yang tidak hierarkis, menyamaratakan kedudukan setiap kategori, dan judul kategori ditentukan secara bebas oleh siapa saja yang memasukkan sebuah dokumen di dalam kategori-kategori tersebut.
翻译:民俗学是一个非等级文件分类系统, 它以平坦的方式对待每个类别, 由提交这些类别中的文件的任何人自由输入每个类别。 在提交文件时, 通过输入最适合文档的类别列表自动进行分类 。 del. icio. us (http://del. icio. us) 网站是最受欢迎的社会书签网站之一, 使用 Folmology 。 使用 Folmology 工具, 虽然非常容易, 也有其弱点, 例如使用不同标签来使用相同的概念, 使用相同标签来使用不同的概念, 使用相同的标签, 没有协助质量控制等。 我们试图通过分析网络文件的内容, 并使用多语种天性 Bayes 算法将这些问题自动分类 。 Bayes basilger 工作是通过一组证据和一组课程来进行系统培训, 我们可以通过样本数据来确定某个类的数值的概率。 Bayesqalgorideal 也使用一个从样本数据中计算出来的类别的概率 。