Simulating discontinuities is a long standing problem especially for shock waves with strong nonlinear feather. Despite being a promising method, the recently developed physics-informed neural network (PINN) is still weak for calculating discontinuities compared with traditional shock-capturing methods. In this paper, we intend to improve the shock-capturing ability of the PINN. The primary strategy of this work is to weaken the expression of the network near discontinuities by adding a gradient-weight into the governing equations locally at each residual point. This strategy allows the network to focus on training smooth parts of the solutions. Then, automatically affected by the compressible property near shock waves, a sharp discontinuity appears with wrong inside shock transition-points compressed into well-trained smooth regions as passive particles. We study the solutions of one-dimensional Burgers equation and one- and two-dimensional Euler equations. Compared with the traditional high-order WENO-Z method in numerical examples, the proposed method can substantially improve discontinuity computing.


翻译:模拟不连续是一个长期存在的问题,特别是对于具有强大非线性羽毛的冲击波而言。 尽管这是一个很有希望的方法,但最近开发的物理知情神经网络(PINN)在与传统的冲击捕捉方法相比计算不连续方面仍然薄弱。 在本文中,我们打算提高PINN的冲击捕捉能力。 这项工作的主要战略是通过在每个剩余点对当地治理方程式增加一个渐变重量来削弱网络接近不连续的表达方式。 这一战略使网络能够侧重于对解决方案的顺利部分进行培训。 然后,由于受到靠近冲击波的压缩特性的自动影响,在冲击波中出现急剧不连续的情况,其内部冲击过渡点被压缩到作为被动粒子的训练有素的光滑区域。 我们研究单维汉堡方程式和一维和二维电动方程式的解决方案。 与数字实例中传统的高阶WNO-Z方法相比,拟议方法可以大大改进不连续计算。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
26+阅读 · 2021年4月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月1日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员