Recent advances in deep learning demonstrate the ability to generate synthetic gaze data. However, most approaches have primarily focused on generating data from random noise distributions or global, predefined latent embeddings, whereas individualized gaze sequence generation has been less explored. To address this gap, we revisit two recent approaches based on diffusion and generative adversarial networks (GANs) and introduce modifications that make both models explicitly subject-aware while improving accuracy and effectiveness. For the diffusion-based approach, we utilize compact user embeddings that emphasize per-subject traits. Moreover, for the GAN-based approach, we propose a subject-specific synthesis module that conditioned the generator to retain better idiosyncratic gaze information. Finally, we conduct a comprehensive assessment of these modified approaches utilizing standard eye-tracking signal quality metrics, including spatial accuracy and precision. This work helps define synthetic signal quality, realism, and subject specificity, thereby contributing to the potential development of gaze-based applications.
翻译:深度学习的最新进展展示了生成合成注视数据的能力。然而,大多数方法主要侧重于从随机噪声分布或全局预定义潜在嵌入生成数据,而针对个体化注视序列生成的研究相对较少。为填补这一空白,我们重新审视了基于扩散模型和生成对抗网络(GANs)的两种近期方法,并引入改进使两种模型均具备显式的主体感知能力,同时提升准确性与有效性。对于基于扩散模型的方法,我们采用强调个体特征的紧凑用户嵌入;而对于基于GAN的方法,我们提出一个特定主体合成模块,通过条件化生成器以更好地保留独特的注视信息。最后,我们利用标准眼动信号质量指标(包括空间准确度与精确度)对这些改进方法进行全面评估。本研究有助于界定合成信号的质量、真实感与主体特异性,从而为基于注视的应用的潜在发展作出贡献。