Human pose estimators are typically retrained from scratch or naively fine-tuned whenever keypoint sets, sensing modalities, or deployment domains change--an inefficient, compute-intensive practice that rarely matches field constraints. We present PoseAdapt, an open-source framework and benchmark suite for continual pose model adaptation. PoseAdapt defines domain-incremental and class-incremental tracks that simulate realistic changes in density, lighting, and sensing modality, as well as skeleton growth. The toolkit supports two workflows: (i) Strategy Benchmarking, which lets researchers implement continual learning (CL) methods as plugins and evaluate them under standardized protocols; and (ii) Model Adaptation, which allows practitioners to adapt strong pretrained models to new tasks with minimal supervision. We evaluate representative regularization-based methods in single-step and sequential settings. Benchmarks enforce a fixed lightweight backbone, no access to past data, and tight per-step budgets. This isolates adaptation strategy effects, highlighting the difficulty of maintaining accuracy under strict resource limits. PoseAdapt connects modern CL techniques with practical pose estimation needs, enabling adaptable models that improve over time without repeated full retraining.
翻译:人体姿态估计器通常在关键点集合、感知模态或部署领域发生变化时被从头重新训练或简单微调——这是一种低效且计算密集的做法,很少能匹配实际应用场景的限制。我们提出了PoseAdapt,一个用于持续姿态模型适应的开源框架与基准测试套件。PoseAdapt定义了领域增量与类别增量两条评估轨道,模拟了密度、光照、感知模态以及骨架结构增长等现实变化。该工具包支持两种工作流程:(i)策略基准测试,允许研究人员以插件形式实现持续学习方法,并在标准化协议下进行评估;(ii)模型适应,使实践者能够以最少的监督将强预训练模型适配到新任务上。我们在单步与连续设置下评估了代表性的基于正则化的方法。基准测试强制采用固定的轻量级骨干网络、禁止访问历史数据,并设定严格的每步资源预算。这隔离了适应策略的影响,突显了在严格资源限制下保持准确性的挑战。PoseAdapt将现代持续学习技术与实际姿态估计需求相结合,实现了无需重复完整重训练即可随时间持续改进的适应性模型。