Pedestrian inertial localization is key for mobile and IoT services because it provides infrastructure-free positioning. Yet most learning-based methods depend on fixed sliding-window integration, struggle to adapt to diverse motion scales and cadences, and yield inconsistent uncertainty, limiting real-world use. We present ReNiL, a Bayesian deep-learning framework for accurate, efficient, and uncertainty-aware pedestrian localization. ReNiL introduces Inertial Positioning Demand Points (IPDPs) to estimate motion at contextually meaningful waypoints instead of dense tracking, and supports inference on IMU sequences at any scale so cadence can match application needs. It couples a motion-aware orientation filter with an Any-Scale Laplace Estimator (ASLE), a dual-task network that blends patch-based self-supervision with Bayesian regression. By modeling displacements with a Laplace distribution, ReNiL provides homogeneous Euclidean uncertainty that integrates cleanly with other sensors. A Bayesian inference chain links successive IPDPs into consistent trajectories. On RoNIN-ds and a new WUDataset covering indoor and outdoor motion from 28 participants, ReNiL achieves state-of-the-art displacement accuracy and uncertainty consistency, outperforming TLIO, CTIN, iMoT, and RoNIN variants while reducing computation. Application studies further show robustness and practicality for mobile and IoT localization, making ReNiL a scalable, uncertainty-aware foundation for next-generation positioning.
翻译:行人惯性定位是移动与物联网服务的关键技术,因其提供无需基础设施的定位能力。然而,大多数基于学习的方法依赖于固定的滑动窗口积分,难以适应多样的运动尺度与步态节奏,且产生不一致的不确定性估计,限制了实际应用。本文提出ReNiL,一种贝叶斯深度学习框架,用于实现精确、高效且具备不确定性感知的行人定位。ReNiL引入惯性定位需求点(IPDPs),在上下文意义明确的路径点而非密集跟踪中估计运动,并支持对任意尺度的IMU序列进行推理,使节奏能够匹配应用需求。该方法将运动感知的姿态滤波器与任意尺度拉普拉斯估计器(ASLE)相结合,后者是一个双任务网络,融合了基于片段的自我监督与贝叶斯回归。通过使用拉普拉斯分布建模位移,ReNiL提供均匀的欧几里德不确定性,可与其他传感器无缝集成。贝叶斯推理链将连续的IPDPs连接为一致的轨迹。在RoNIN-ds数据集及涵盖28名参与者室内外运动的新WUDataset上,ReNiL实现了最先进的位移精度与不确定性一致性,优于TLIO、CTIN、iMoT及RoNIN变体,同时降低了计算开销。应用研究进一步展示了其在移动与物联网定位中的鲁棒性与实用性,使ReNiL成为面向下一代定位的可扩展、不确定性感知的基础框架。