Variational inference (VI) is a popular approach in Bayesian inference, that looks for the best approximation of the posterior distribution within a parametric family, minimizing a loss that is typically the (reverse) Kullback-Leibler (KL) divergence. In this paper, we focus on the following parametric family: mixtures of isotropic Gaussians (i.e., with diagonal covariance matrices proportional to the identity) and uniform weights. We develop a variational framework and provide efficient algorithms suited for this family. In contrast with mixtures of Gaussian with generic covariance matrices, this choice presents a balance between accurate approximations of multimodal Bayesian posteriors, while being memory and computationally efficient. Our algorithms implement gradient descent on the location of the mixture components (the modes of the Gaussians), and either (an entropic) Mirror or Bures descent on their variance parameters. We illustrate the performance of our algorithms on numerical experiments.


翻译:变分推断(VI)是贝叶斯推断中一种常用方法,其通过在参数化分布族中寻找后验分布的最佳近似,通常以最小化(反向)Kullback-Leibler(KL)散度作为损失函数。本文聚焦于以下参数化分布族:各向同性高斯混合分布(即具有与单位矩阵成比例的对角协方差矩阵)与均匀权重。我们针对该分布族建立了变分推断框架,并提出了高效的计算算法。相较于使用通用协方差矩阵的高斯混合模型,该选择在实现对多峰贝叶斯后验分布的精确近似的同时,保持了内存与计算效率的平衡。我们的算法对混合分量位置(高斯分布的众数)实施梯度下降,并对其方差参数采用(熵正则化的)镜像下降或Bures下降优化。我们通过数值实验展示了算法的性能。

0
下载
关闭预览

相关内容

【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
自动结构变分推理,Automatic structured variational inference
专知会员服务
41+阅读 · 2020年2月10日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
PCA的基本数学原理
算法与数学之美
11+阅读 · 2017年8月8日
EKF常用于目标跟踪系统的扩展卡尔曼滤波器
无人机
10+阅读 · 2017年7月25日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2025】生成模型中潜空间的Hessian几何结构
专知会员服务
17+阅读 · 6月15日
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
自动结构变分推理,Automatic structured variational inference
专知会员服务
41+阅读 · 2020年2月10日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
PCA的基本数学原理
算法与数学之美
11+阅读 · 2017年8月8日
EKF常用于目标跟踪系统的扩展卡尔曼滤波器
无人机
10+阅读 · 2017年7月25日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员