Identifying patient subgroups with different treatment responses is an important task to inform medical recommendations, guidelines, and the design of future clinical trials. Existing approaches for treatment effect estimation primarily rely on Randomised Controlled Trials (RCTs), which tend to feature more homogeneous patient groups, making them less relevant for uncovering subgroups in the population encountered in real-world clinical practice. Subgroup analyses established for RCTs suffer from significant statistical biases when applied to observational studies, which benefit from larger and more representative populations. Our work introduces a novel, outcome-guided, subgroup analysis strategy for identifying subgroups of treatment response in both RCTs and observational studies alike. It hence positions itself in-between individualised and average treatment effect estimation to uncover patient subgroups with distinct treatment responses, critical for actionable insights that may influence treatment guidelines. In experiments, our approach significantly outperforms the current state-of-the-art method for subgroup analysis in both randomised and observational treatment regimes.
翻译:识别具有不同治疗反应的患者亚组是一项重要任务,可为医疗建议、指南以及未来临床试验设计提供依据。现有的治疗效果估计方法主要依赖于随机对照试验(RCTs),这些试验通常涉及更同质的患者群体,因此在揭示真实世界临床实践中遇到的群体亚组方面相关性较低。为RCTs建立的亚组分析应用于观察性研究时存在显著的统计偏差,而观察性研究受益于更大且更具代表性的人群。本研究提出了一种新颖的、以结局为导向的亚组分析策略,用于在RCTs和观察性研究中识别治疗反应亚组。该方法因此定位于个体化与平均治疗效果估计之间,以揭示具有不同治疗反应的患者亚组,这对于可能影响治疗指南的可操作见解至关重要。在实验中,我们的方法在随机和观察性治疗体系中均显著优于当前最先进的亚组分析方法。