We give an exposition of the hidden subgroup problem for dihedral groups from the point of view of the standard hidden subgroup quantum algorithm for finite groups. In particular, we recall the obstructions for strong Fourier sampling to succeed, but at the same time, show how the standard algorithm can be modified to establish polynomial quantum query complexity. Finally, we explain a new connection between the dihedral coset problem and cloning of quantum states.


翻译:我们从标准组群隐藏子群量衡算法的角度来解说分级群的隐蔽分组问题。 特别是,我们记得强力Fourier取样成功的障碍,但与此同时,我们指出标准算法可以如何修改以建立多元量子查询复杂度。最后,我们解释了分级共和体问题与量子状态克隆之间的新联系。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
63+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年8月20日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
0+阅读 · 2021年8月18日
Arxiv
0+阅读 · 2021年8月18日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
63+阅读 · 2020年3月4日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关论文
Arxiv
0+阅读 · 2021年8月20日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
0+阅读 · 2021年8月18日
Arxiv
0+阅读 · 2021年8月18日
Top
微信扫码咨询专知VIP会员