We propose a general formulation of a univariate estimation-of-distribution algorithm (EDA). It naturally incorporates the three classic univariate EDAs \emph{compact genetic algorithm}, \emph{univariate marginal distribution algorithm} and \emph{population-based incremental learning} as well as the \emph{max-min ant system} with iteration-best update. Our unified description of the existing algorithms allows a unified analysis of these; we demonstrate this by providing an analysis of genetic drift that immediately gives the existing results proven separately for the four algorithms named above. Our general model also includes EDAs that are more efficient than the existing ones and these may not be difficult to find as we demonstrate for the OneMax and LeadingOnes benchmarks.


翻译:我们提出一个单一分配估计算法(EDA)的一般提法。 它自然包含三种经典的单一分配估计算法(EDA) 。 它自然包含三种典型的单一的 EDAs \ emph{ unvariate 边际分配算法} 和\ emph{ 人口为基础的递增学习}, 以及具有迭代- 最佳更新的 emph{ max- min ant system 。 我们对现有算法的统一描述使得能够对这些算法进行统一分析; 我们通过提供基因漂移分析来证明这一点, 并立即为上述四种算法分别提供现有结果。 我们的一般模型还包括比现有算法更有效率的 EDAs, 这些也许不难找到, 正如我们为 OneMax 和 TeingOnes 基准所展示的那样。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员