Randomly initialized wide neural networks transition to linear functions of weights as the width grows, in a ball of radius $O(1)$ around initialization. A necessary condition for this result is that all layers of the network are wide enough, i.e., all widths tend to infinity. However, the transition to linearity breaks down when this infinite width assumption is violated. In this work we show that linear networks with a bottleneck layer learn bilinear functions of the weights, in a ball of radius $O(1)$ around initialization. In general, for $B-1$ bottleneck layers, the network is a degree $B$ multilinear function of weights. Importantly, the degree only depends on the number of bottlenecks and not the total depth of the network.


翻译:随着宽度的增长,在半径为1美元(1美元)的圆球周围,随机初始的宽度神经网络向重的线性函数过渡。这一结果的一个必要条件是,网络的所有层都足够宽,即所有宽度都具有无限的宽度。然而,如果这一无限宽度假设被违反,向线性网络的过渡就会中断。在这项工作中,我们表明,带有瓶颈层的线性网络在半径为1美元(1美元)的圆球周围,学习重量的双线性函数。一般而言,对于1美元(1美元)的瓶颈层,网络是重量的多线性函数。重要的是,程度只取决于瓶颈的数量,而不是网络的总深度。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员