Hard parameter sharing in multi-task learning (MTL) allows tasks to share some of model parameters, reducing storage cost and improving prediction accuracy. The common sharing practice is to share bottom layers of a deep neural network among tasks while using separate top layers for each task. In this work, we revisit this common practice via an empirical study on fine-grained image classification tasks and make two surprising observations. (1) Using separate bottom-layer parameters could achieve significantly better performance than the common practice and this phenomenon holds for different number of tasks jointly trained on different backbone architectures with different quantity of task-specific parameters. (2) A multi-task model with a small proportion of task-specific parameters from bottom layers can achieve competitive performance with independent models trained on each task separately and outperform a state-of-the-art MTL framework. Our observations suggest that people rethink the current sharing paradigm and adopt the new strategy of using separate bottom-layer parameters as a stronger baseline for model design in MTL.


翻译:多任务学习(MTL)中的硬参数共享使任务能够分享一些模型参数,降低存储成本,提高预测准确性;共同共享做法是在任务之间分享深神经网络的底层,同时对每项任务使用不同的顶层;在这项工作中,我们通过对细微图像分类任务进行经验研究,重新审视这一共同做法,并提出了两项令人惊讶的意见。 (1) 使用不同的底层参数可以比通常做法取得更好的业绩,对于不同任务具体参数不同的不同主干结构上联合培训的不同任务,这种现象存在。 (2) 多任务模式具有低层一小部分任务具体参数,能够以独立模式实现竞争性业绩,对每项任务分别进行培训,超越了最新技术的MTL框架。 我们的观察表明,人们重新考虑目前的共享模式,采用新的战略,使用不同的底层参数作为MTL模型设计的更强有力的基准。

1
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
45+阅读 · 2020年1月23日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
31+阅读 · 2021年3月29日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
3+阅读 · 2018年11月19日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员