Multilingual search can be achieved with subword tokenization. The accuracy of traditional TF-IDF approaches depend on manually curated tokenization, stop words and stemming rules, whereas subword TF-IDF (STF-IDF) can offer higher accuracy without such heuristics. Moreover, multilingual support can be incorporated inherently as part of the subword tokenization model training. XQuAD evaluation demonstrates the advantages of STF-IDF: superior information retrieval accuracy of 85.4% for English and over 80% for 10 other languages without any heuristics-based preprocessing. The software to reproduce these results are open-sourced as a part of Text2Text: https://github.com/artitw/text2text


翻译:多语种搜索可以用子词符号化来实现。传统的TF-IDF方法的准确性取决于手动翻译的象征性化、停止单词和断层规则,而TF-IDF(STF-IDF)的子词可以提供更高的准确性,而不需要这种杂费。此外,多语种支持可以作为子词符号化模式培训的一部分内在地纳入其中。 XQAD评价表明STF-IDF的优点:英语85.4%的高级信息检索准确性,而其他10种语言的80%以上的高级信息检索准确性,而没有以超语法为基础的预处理。这些结果的复制软件作为文本2Text的一部分是开源的:https://github.com/artitw/text2text。

0
下载
关闭预览

相关内容

TF-IDF(英语:term frequency–inverse document frequency)是一种用于信息检索与文本挖掘的常用加权技术。tf-idf是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。tf-idf加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。除了tf-idf以外,互联网上的搜索引擎还会使用基于链接分析的评级方法,以确定文件在搜索结果中出现的顺序。
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
51+阅读 · 2022年10月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员