This study presents an in-depth analysis of the security landscape in Bluetooth Low Energy (BLE) tracking systems, with a particular emphasis on Apple AirTags and Samsung SmartTags, including their cryptographic frameworks. Our investigation traverses a wide spectrum of attack vectors such as physical tampering, firmware exploitation, signal spoofing, eavesdropping, jamming, app security flaws, Bluetooth security weaknesses, location spoofing, threats to owner devices, and cloud-related vulnerabilities. Moreover, we delve into the security implications of the cryptographic methods utilized in these systems. Our findings reveal that while BLE trackers like AirTags and SmartTags offer substantial utility, they also pose significant security risks. Notably, Apple's approach, which prioritizes user privacy by removing intermediaries, inadvertently leads to device authentication challenges, evidenced by successful AirTag spoofing instances. Conversely, Samsung SmartTags, designed to thwart beacon spoofing, raise critical concerns about cloud security and user privacy. Our analysis also highlights the constraints faced by these devices due to their design focus on battery life conservation, particularly the absence of secure boot processes, which leaves them susceptible to OS modification and a range of potential attacks. The paper concludes with insights into the anticipated evolution of these tracking systems. We predict that future enhancements will likely focus on bolstering security features, especially as these devices become increasingly integrated into the broader IoT ecosystem and face evolving privacy regulations. This shift is imperative to address the intricate balance between functionality and security in next-generation BLE tracking systems.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员