We present a quantum-inspired algorithm that utilizes Quantum Hamiltonian Descent (QHD) for efficient community detection. Our approach reformulates the community detection task as a Quadratic Unconstrained Binary Optimization (QUBO) problem, and QHD is deployed to identify optimal community structures. We implement a multi-level algorithm that iteratively refines community assignments by alternating between QUBO problem setup and QHD-based optimization. Benchmarking shows our method achieves up to 5.49\% better modularity scores while requiring less computational time compared to classical optimization approaches. This work demonstrates the potential of hybrid quantum-inspired solutions for advancing community detection in large-scale graph data.


翻译:本文提出一种量子启发式算法,利用量子哈密顿下降(QHD)实现高效的社区检测。该方法将社区检测任务重新表述为二次无约束二元优化(QUBO)问题,并部署QHD来识别最优社区结构。我们实现了一种多层级算法,通过在QUBO问题构建与基于QHD的优化之间交替迭代,逐步优化社区分配。基准测试表明,相较于经典优化方法,本方法在减少计算时间的同时,模块度得分最高可提升5.49%。这项工作展示了混合量子启发式解决方案在推进大规模图数据社区检测方面的潜力。

0
下载
关闭预览

相关内容

论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员