Dedicated analog neurocomputing circuits are promising for high-throughput, low power consumption applications of machine learning (ML) and for applications where implementing a digital computer is unwieldy (remote locations; small, mobile, and autonomous devices, extreme conditions, etc.). Neural networks (NN) implemented in such circuits, however, must contend with circuit noise and the non-uniform shapes of the neuron activation function (NAF) due to the dispersion of performance characteristics of circuit elements (such as transistors or diodes implementing the neurons). We present a computational study of the impact of circuit noise and NAF inhomogeneity in function of NN architecture and training regimes. We focus on one application that requires high-throughput ML: materials informatics, using as representative problem ML of formation energies vs. lowest-energy isomer of peri-condensed hydrocarbons, formation energies and band gaps of double perovskites, and zero point vibrational energies of molecules from QM9 dataset. We show that NNs generally possess low noise tolerance with the model accuracy rapidly degrading with noise level. Single-hidden layer NNs, and NNs with larger-than-optimal sizes are somewhat more noise-tolerant. Models that show less overfitting (not necessarily the lowest test set error) are more noise-tolerant. Importantly, we demonstrate that the effect of activation function inhomogeneity can be palliated by retraining the NN using practically realized shapes of NAFs.


翻译:专用模拟神经计算电路在机器学习(ML)的高吞吐量、低功耗应用以及数字计算机难以部署的场合(偏远地区;小型、移动和自主设备,极端条件等)中展现出广阔前景。然而,在此类电路中实现的神经网络(NN)必须应对电路噪声以及由于电路元件(如实现神经元的晶体管或二极管)性能特性分散导致的神经元激活函数(NAF)形状非均匀性问题。本文通过计算研究了电路噪声和NAF非均匀性对神经网络架构及训练机制的影响。我们聚焦于一个需要高吞吐量机器学习的应用领域:材料信息学,选用以下代表性问题进行机器学习研究:稠环烃的形成能与最低能量异构体的关系、双钙钛矿的形成能与带隙,以及QM9数据集中分子的零点振动能。研究表明,神经网络普遍具有较低的噪声容限,模型精度随噪声水平增加而快速下降。单隐藏层神经网络以及规模大于最优值的神经网络表现出相对较高的噪声容限。过拟合程度较低(未必是测试集误差最小)的模型具有更好的噪声容限。重要的是,我们证明了通过使用实际实现的NAF形状对神经网络进行重新训练,可以有效缓解激活函数非均匀性带来的负面影响。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
VIP会员
相关资讯
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员