Traditional agent-based models (ABMs) of opinion dynamics often fail to capture the psychological heterogeneity driving online polarization due to simplistic homogeneity assumptions. This limitation obscures the critical interplay between individual cognitive biases and information propagation, thereby hindering a mechanistic understanding of how ideological divides are amplified. To address this challenge, we introduce the Personality-Refracted Intelligent Simulation Model (PRISM), a hybrid framework coupling stochastic differential equations (SDE) for continuous emotional evolution with a personality-conditional partially observable Markov decision process (PC-POMDP) for discrete decision-making. In contrast to continuous trait approaches, PRISM assigns distinct Myers-Briggs Type Indicator (MBTI) based cognitive policies to multimodal large language model (MLLM) agents, initialized via data-driven priors from large-scale social media datasets. PRISM achieves superior personality consistency aligned with human ground truth, significantly outperforming standard homogeneous and Big Five benchmarks. This framework effectively replicates emergent phenomena such as rational suppression and affective resonance, offering a robust tool for analyzing complex social media ecosystems.
翻译:传统的基于智能体的意见动力学模型常因简化的同质性假设而无法捕捉驱动在线极化的心理异质性。这一局限模糊了个体认知偏差与信息传播之间的关键相互作用,从而阻碍了对意识形态分歧如何被放大的机制性理解。为解决这一挑战,我们提出了人格折射智能仿真模型(PRISM),该混合框架将用于连续情感演化的随机微分方程与用于离散决策的人格条件部分可观测马尔可夫决策过程相耦合。与连续特质方法不同,PRISM为多模态大语言模型智能体分配了基于迈尔斯-布里格斯类型指标的差异化认知策略,并通过来自大规模社交媒体数据集的数据驱动先验进行初始化。PRISM实现了与人类真实情况相符的卓越人格一致性,显著优于标准的同质性和大五人格基准。该框架有效复现了理性抑制与情感共鸣等涌现现象,为分析复杂的社交媒体生态系统提供了一个强大的工具。