Tracking ripening tomatoes is time consuming and labor intensive. Artificial intelligence technologies combined with those of computer vision can help users optimize the process of monitoring the ripening status of plants. To this end, we have proposed a tomato ripening monitoring approach based on deep learning in complex scenes. The objective is to detect mature tomatoes and harvest them in a timely manner. The proposed approach is declined in two parts. Firstly, the images of the scene are transmitted to the pre-processing layer. This process allows the detection of areas of interest (area of the image containing tomatoes). Then, these images are used as input to the maturity detection layer. This layer, based on a deep neural network learning algorithm, classifies the tomato thumbnails provided to it in one of the following five categories: green, brittle, pink, pale red, mature red. The experiments are based on images collected from the internet gathered through searches using tomato state across diverse languages including English, German, French, and Spanish. The experimental results of the maturity detection layer on a dataset composed of images of tomatoes taken under the extreme conditions, gave a good classification rate.
翻译:暂无翻译