Haptic sciences and technologies benefit greatly from comprehensive datasets that capture tactile stimuli under controlled, systematic conditions. However, existing haptic datasets collect data through uncontrolled exploration, which hinders the systematic analysis of how motion parameters (e.g., motion direction and velocity) influence tactile perception. This paper introduces Cluster Haptic Texture Dataset, a multimodal dataset recorded using a 3-axis machine with an artificial finger to precisely control sliding velocity and direction. The dataset encompasses 118 textured surfaces across 9 material categories, with recordings at 5 velocity levels (20-60 mm/s) and 8 directions. Each surface was tested under 160 conditions, yielding 18,880 synchronized recordings of audio, acceleration, force, position, and visual data. Validation using convolutional neural networks demonstrates classification accuracies of 96% for texture recognition, 88.76% for velocity estimation, and 78.79% for direction estimation, confirming the dataset's utility for machine learning applications. This resource enables research in haptic rendering, texture recognition algorithms, and human tactile perception mechanisms, supporting the development of realistic haptic interfaces for virtual reality systems and robotic applications.
翻译:触觉科学与技术极大地受益于在受控、系统化条件下捕获触觉刺激的综合数据集。然而,现有触觉数据集通过非受控探索收集数据,这阻碍了对运动参数(如运动方向和速度)如何影响触觉感知的系统性分析。本文介绍了Cluster Haptic Texture Dataset,这是一个使用三轴机械臂与人工手指记录的多模态数据集,旨在精确控制滑动速度和方向。该数据集涵盖9个材料类别中的118个纹理表面,记录包含5个速度等级(20-60毫米/秒)和8个方向。每个表面在160种条件下进行测试,产生了18,880条同步记录的音频、加速度、力、位置和视觉数据。通过卷积神经网络验证,纹理识别的分类准确率达到96%,速度估计准确率为88.76%,方向估计准确率为78.79%,证实了该数据集在机器学习应用中的实用性。这一资源支持触觉渲染、纹理识别算法及人类触觉感知机制的研究,有助于开发用于虚拟现实系统和机器人应用的真实感触觉界面。