We study a class of degenerate diffusion generators that arise in sequential testing and quickest detection problems with partial information. The observation process is driven by $k$ independent Brownian motions, while the hidden state takes $n+1$ values with $k<n$. By moving to the posterior likelihood coordinates, we analyze the H\"omander's condition of the operator both without state switching (testing) and with switching (detection). We characterize the cases where the operator is hypoelliptic for the former, give two different sufficient conditions for the latter, and discuss their consequences.
翻译:本文研究一类在部分信息下的序贯测试与最快检测问题中出现的退化扩散生成算子。观测过程由$k$个独立布朗运动驱动,而隐状态取$n+1$个值且满足$k<n$。通过转换到后验似然坐标,我们分别分析了无状态切换(测试)与有状态切换(检测)情形下算子的赫曼德条件。对于前者,我们刻画了算子具有亚椭圆性的情形;对于后者,我们给出了两个不同的充分条件,并讨论了其相关推论。