The dynamic expansion architecture is becoming popular in class incremental learning, mainly due to its advantages in alleviating catastrophic forgetting. However, task confusion is not well assessed within this framework, e.g., the discrepancy between classes of different tasks is not well learned (i.e., inter-task confusion, ITC), and certain priority is still given to the latest class batch (i.e., old-new confusion, ONC). We empirically validate the side effects of the two types of confusion. Meanwhile, a novel solution called Task Correlated Incremental Learning (TCIL) is proposed to encourage discriminative and fair feature utilization across tasks. TCIL performs a multi-level knowledge distillation to propagate knowledge learned from old tasks to the new one. It establishes information flow paths at both feature and logit levels, enabling the learning to be aware of old classes. Besides, attention mechanism and classifier re-scoring are applied to generate more fair classification scores. We conduct extensive experiments on CIFAR100 and ImageNet100 datasets. The results demonstrate that TCIL consistently achieves state-of-the-art accuracy. It mitigates both ITC and ONC, while showing advantages in battle with catastrophic forgetting even no rehearsal memory is reserved.


翻译:动态扩张结构在课堂递增学习中越来越受欢迎,这主要是因为它有助于减轻灾难性的忘却。然而,在本框架内,任务混淆没有很好地评估,例如,不同任务类别之间的差异没有很好地了解(即任务间混乱、国贸中心),某些优先事项仍然放在最新的类别(即旧的混乱、ONC)上。我们从经验中验证了两种类型混淆的副作用。与此同时,提议了一个称为任务相关递增学习的新解决办法,以鼓励在各项任务之间有区别和公平地利用特征。TCIL进行多层次的知识蒸馏,将从旧任务学到的知识传播到新任务。它在特性和日志两级建立了信息流动路径,使学习能够了解旧类(即旧的混乱、ONC),此外,还运用了关注机制和分类再分类,以产生更公平的分类分数。我们在CIFAR100和图像网100数据集上进行了广泛的实验。结果显示,TCIL始终在取得最新水平的准确性。它减轻了ITC和ONC的记忆前期,同时展示了在战争中留下的优势。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
181+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2023年2月7日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员