VIP内容

【导读】Facebook AI Research的研究员Marc'Aurelio Ranzato在斯坦福大学经典自然语言处理课程2020年CS224N做了报告《低资源机器翻译》,欢迎查看!

成为VIP会员查看完整内容
0
15

最新内容

We study fair allocation of indivisible goods among agents. Prior research focuses on additive agent preferences, which leads to an impossibility when seeking truthfulness, fairness, and efficiency. We show that when agents have binary additive preferences, a compelling rule -- maximum Nash welfare (MNW) -- provides all three guarantees. Specifically, we show that deterministic MNW with lexicographic tie-breaking is group strategyproof in addition to being envy-free up to one good and Pareto optimal. We also prove that fractional MNW -- known to be group strategyproof, envy-free, and Pareto optimal -- can be implemented as a distribution over deterministic MNW allocations, which are envy-free up to one good. Our work establishes maximum Nash welfare as the ultimate allocation rule in the realm of binary additive preferences.

0
0
下载
预览

最新论文

We study fair allocation of indivisible goods among agents. Prior research focuses on additive agent preferences, which leads to an impossibility when seeking truthfulness, fairness, and efficiency. We show that when agents have binary additive preferences, a compelling rule -- maximum Nash welfare (MNW) -- provides all three guarantees. Specifically, we show that deterministic MNW with lexicographic tie-breaking is group strategyproof in addition to being envy-free up to one good and Pareto optimal. We also prove that fractional MNW -- known to be group strategyproof, envy-free, and Pareto optimal -- can be implemented as a distribution over deterministic MNW allocations, which are envy-free up to one good. Our work establishes maximum Nash welfare as the ultimate allocation rule in the realm of binary additive preferences.

0
0
下载
预览
Top