We investigate the utility of employing multiple buffers in solving a class of rearrangement problems with pick-n-swap manipulation primitives. In this problem, objects stored randomly in a lattice are to be sorted using a robot arm with k>=1 swap spaces or buffers, capable of holding up to k objects on its end-effector simultaneously. On the structural side, we show that the addition of each new buffer brings diminishing returns in saving the end-effector travel distance while holding the total number of pick-n-swap operations at the minimum. This is due to an interesting recursive cycle structure in random m-permutation, where the largest cycle covers over 60% of objects. On the algorithmic side, we propose fast algorithms for 1D and 2D lattice rearrangement problems that can effectively use multiple buffers to boost solution optimality. Numerical experiments demonstrate the efficiency and scalability of our methods, as well as confirm the diminishing return structure as more buffers are employed.


翻译:我们调查了使用多个缓冲器解决使用轻便吸盘操纵原始件的一类重新排列问题的实用性。 在这个问题中, 随机存储的物体将使用带有 k ⁇ 1 交换空格或缓冲器的机器人臂进行分类, 能够同时在终端效果器上保持 k 对象。 在结构方面, 我们显示, 添加每个新的缓冲器会减少回报率, 以保存最终效果或旅行距离, 并保持最小的拾取- 吸盘操作总数 。 这是因为随机的 m- 移动中, 最大周期覆盖60%以上对象的循环结构很有意思 。 在算法方面, 我们提出了 1D 和 2D 的快速算法 重新配置问题, 能够有效地使用多个缓冲来提升解决方案的优化性。 数字实验显示了我们方法的效率和可缩放性, 并且随着使用更多的缓冲器来确认递减的返回结构 。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
116+阅读 · 2022年4月21日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
83+阅读 · 2021年12月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月10日
Arxiv
0+阅读 · 2023年4月9日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员