Hybrid multiple-input multiple-output (MIMO) is an attractive technology for realizing extreme massive MIMO systems envisioned for future wireless communications in a scalable and power-efficient manner. However, the fact that hybrid MIMO systems implement part of their beamforming in analog and part in digital makes the optimization of their beampattern notably more challenging compared with conventional fully digital MIMO. Consequently, recent years have witnessed a growing interest in using data-aided artificial intelligence (AI) tools for hybrid beamforming design. This article reviews candidate strategies to leverage data to improve real-time hybrid beamforming design. We discuss the architectural constraints and characterize the core challenges associated with hybrid beamforming optimization. We then present how these challenges are treated via conventional optimization, and identify different AI-aided design approaches. These can be roughly divided into purely data-driven deep learning models and different forms of deep unfolding techniques for combining AI with classical optimization.We provide a systematic comparative study between existing approaches including both numerical evaluations and qualitative measures. We conclude by presenting future research opportunities associated with the incorporation of AI in hybrid MIMO systems.


翻译:混合氧化物系统以模拟和部分数字形式实施其部分波束成型,使得其光束优化比常规的完全数字化的MIMO更具有挑战性。因此,近年来,人们越来越有兴趣使用数据辅助人工智能工具来进行混合波束成型设计。本文章审查了候选战略,以利用数据改进实时混合波束成型设计。我们讨论了建筑制约因素,并说明了与混合波束优化相关的核心挑战。然后我们介绍了如何通过常规优化处理这些挑战,并确定了不同的AI辅助设计方法。这些方法大致可以分为纯数据驱动的深层学习模型和将AI与古典优化相结合的不同深度演化技术形式。我们对现有方法进行了系统的比较研究,包括数字评价和定性措施。我们最后介绍了与将AI纳入混合光谱化系统相关的未来研究机会。</s>

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员