Deep Metric Learning trains a neural network to map input images to a lower-dimensional embedding space such that similar images are closer together than dissimilar images. When used for item retrieval, a query image is embedded using the trained model and the closest items from a database storing their respective embeddings are returned as the most similar items for the query. Especially in product retrieval, where a user searches for a certain product by taking a photo of it, the image background is usually not important and thus should not influence the embedding process. Ideally, the retrieval process always returns fitting items for the photographed object, regardless of the environment the photo was taken in. In this paper, we analyze the influence of the image background on Deep Metric Learning models by utilizing five common loss functions and three common datasets. We find that Deep Metric Learning networks are prone to so-called background bias, which can lead to a severe decrease in retrieval performance when changing the image background during inference. We also show that replacing the background of images during training with random background images alleviates this issue. Since we use an automatic background removal method to do this background replacement, no additional manual labeling work and model changes are required while inference time stays the same. Qualitative and quantitative analyses, for which we introduce a new evaluation metric, confirm that models trained with replaced backgrounds attend more to the main object in the image, benefitting item retrieval systems.


翻译:深磁学习训练一个神经网络, 将图像输入到一个低维嵌入空间, 这样类似的图像会比不同图像更加接近。 当用于项目检索时, 使用经过训练的模型嵌入一个查询图像, 存储各自嵌入内容的数据库中最接近的项目会作为最相似的查询项目返回。 特别是在产品检索中, 用户通过拍照搜索某个产品, 其图像背景通常并不重要, 因此不应影响嵌入过程。 理想的是, 检索过程总是返回被拍摄对象的合适项目, 不论照片是在何种环境中拍摄的。 在本文中, 我们利用五个常见的损失函数和三个共同数据集来分析深米学习模型中图像背景背景的影响。 我们发现, 深米学习网络容易出现所谓的背景偏差, 这可能导致在推断中改变图像背景时, 检索性表现会严重下降。 我们还表明, 以随机背景图像来取代图像的背景, 这一问题会有所缓解。 由于我们使用自动的背景移除方法来进行背景替换, 没有额外的手工标签, 而在新的图像检索中, 需要更精确地使用新的格式分析。

0
下载
关闭预览

相关内容

度量学习的目的为了衡量样本之间的相近程度,而这也正是模式识别的核心问题之一。大量的机器学习方法,比如K近邻、支持向量机、径向基函数网络等分类方法以及K-means聚类方法,还有一些基于图的方法,其性能好坏都主要有样本之间的相似度量方法的选择决定。 度量学习通常的目标是使同类样本之间的距离尽可能缩小,不同类样本之间的距离尽可能放大。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年11月7日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
14+阅读 · 2020年10月26日
A Comprehensive Survey on Transfer Learning
Arxiv
117+阅读 · 2019年11月7日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
16+阅读 · 2018年4月2日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关论文
Arxiv
0+阅读 · 2022年11月7日
Arxiv
21+阅读 · 2022年2月24日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
14+阅读 · 2020年10月26日
A Comprehensive Survey on Transfer Learning
Arxiv
117+阅读 · 2019年11月7日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
16+阅读 · 2018年4月2日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员