Multi-level modeling is an important approach for analyzing complex survey data using multi-stage sampling. However, estimation of multi-level models can be challenging when we combine several datasets with distinct hierarchies with sampling weights. This paper presents a method for combining multiple datasets with different hierarchical structures due to distinct informative sampling designs for the same survey. To develop an approach with complete generality, we propose to define a pseudo-cluster, a cluster containing only a singleton observation, to unify the data structure and thereby enable estimation of multi-level models incorporating sampling weights across the combined sample. We justify incorporating sampling weights at each level of the hierarchical model and in doing-so define a pseudo-likelihood estimation procedure. Simulation studies are used to illustrate the effect of incorporating sampling designs in this challenging multi-level modeling scenario. We demonstrate in the simulation studies that considering a linear mixed model with sampling weights provides unbiased estimates of model parameters and enhances the estimation of the variance components of the random effects. The proposed method is illustrated through a novel application from the National Survey of Healthcare Organizations and Systems that sought to determine which organizational characteristics or traits, as measured in the surveys, have the strongest average relationship to the percentage of depression and anxiety diagnoses in physician practices in the US.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年11月8日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员